Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Tri- μ_{2}-chloro-tetrachloro- μ_{3}-oxo-hexakis(tetrahydrofuran- κ O)dititanium(III)samarium(III): a novel trinuclear Sm-Ti mixed species

Claude Villiers,* Pierre Thuéry* and Michel Ephritikhine

CEA/Saclay, DSM/DRECAM/SCM (CNRS URA 331), Bâtiment 125, 91191 Gif-sur-
Yvette, France
Correspondence e-mail: villiers@drecam.cea.fr, thuery@drecam.cea.fr

Received 18 November 2004
Accepted 13 December 2004
Online 15 January 2005
In the title compound, $\left[\mathrm{SmTi}_{2} \mathrm{Cl}_{7} \mathrm{O}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{6}\right]$, the metal ions are linked by a central μ_{3}-oxo ion and by three μ_{2}-chloro ions, giving a planar moiety containing a binary crystallographic axis. The coordination spheres are completed by terminal chloro ligands and tetrahydrofuran molecules, with resulting pentagonal bipyramidal and octahedral environments for the Sm and Ti atoms, respectively.

Comment

There is increasing interest in the use of the lanthanide metals as electron-transfer reagents in organic transformations, such as the reductive dimerization of carbonyl compounds (Banik, 2002). The dualistic aspect of the latter reaction, including pinacol coupling and olefin reactions, has been extensively investigated in the case of low-valent titanium reagents, produced by TiCl_{4} or TiCl_{3} with reducers such as alkali metals, $\mathrm{C}_{8} \mathrm{~K}, \mathrm{LiAlH}_{4}, \mathrm{Mg}(\mathrm{Hg}), \mathrm{Zn}$ or $\mathrm{Zn}(\mathrm{Cu})$ (Ephritikhine \& Villiers, 2004). On the other hand, the catalytic activity of the $\mathrm{TiCl}_{4}-\mathrm{Sm}$ system in propylene metathesis has been demonstrated (Imamura et al., 1989). As an extension of our studies on the McMurry reaction with the low-valent titanium reagent system $\mathrm{TiCl}_{4}-\mathrm{Li}(\mathrm{Hg})$ (Villiers \& Ephritikhine, 2001), we have investigated the use of samarium metal instead of lithium amalgam as a reducing agent. In this context, we have isolated the title compound, (I), as the sole species from a tetrahydrofuran (THF) solution of the $\mathrm{TiCl}_{4}-$ Sm couple at 333 K , the presence of the oxo ion probably being due to adventitious traces of oxygen and/or water entering the NMR tube during heating. Compound (I) belongs to the family of mixed-metal species uniting lanthanide and transition metal ions. Only one complex with a μ_{3}-oxo ion bridging two Ti atoms and one Ce atom is reported in the Cambridge Structural Database (CSD; Version 5.25; Allen, 2002), namely a tetranuclear Ce-Ti complex of $1: 1$ stoichiometry with additional μ, η^{2}-pinacolate and isopropoxide brid-
ging ligands (Hubert-Pfalzgraf et al., 1999). The only complex in the CSD that comprises both Sm and Ti atoms is the pentanuclear species $\left[\mathrm{Sm}_{4} \mathrm{Ti}\left(\mu_{5}-\mathrm{O}\right)\left(\mu_{3}-\mathrm{OR}\right)_{2}(\mu-\mathrm{OR})_{6}(\mathrm{OR})_{6}\right]$, (II), where R denotes isopropyl (Daniele et al., 1994). Compound (I) thus represents a rare example of an $\mathrm{Sm}-\mathrm{Ti}$ complex and is the first trinuclear one. Whereas alkoxide or oxoalkoxide complexes are frequent occurrences in such lanthanide- $3 d$ transition mixed-metal compounds, (I) is a unique example of an oxychloride species.

The asymmetric unit in (I) contains half a molecule, the other half being generated by the binary crystallographic axis containing atoms $\mathrm{Sm}, \mathrm{O} 1$ and Cl 4 (Fig. 1). The three metal ions are bridged by a central trigonal μ_{3}-oxo ion and by three μ_{2}-chloro ions, the heptanuclear assemblage thus formed being planar, with an r.m.s. deviation of $0.012 \AA$. The whole assembly is analogous to one-half of the rhombus-shaped

Figure 1
A view of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are at the symmetry position $\left(-x, y, \frac{3}{2}-z\right)$.
assemblage in the di- μ_{3}-oxo-bridged $\mathrm{Ce}-\mathrm{Ti}$ tetranuclear complex cited above (Hubert-Pfalzgraf et al., 1999), with atom Cl 4 in (I) replacing the second μ_{3}-oxo ion, and the other chloride ions and the THF moieties in (I) replacing the μ, η^{2} pinacolate and isopropoxide ligands.

The Sm atom is bound to four chloride ions, two of them terminal (Cl 1 and $\mathrm{Cl1}^{\prime}$) and the others bridging (Cl 2 and $\mathrm{Cl} 2^{\prime}$) [primed atoms are at the symmetry position $\left(-x, y, \frac{3}{2}-z\right)$]. The $\mathrm{Sm}-\mathrm{Cl}$ bond lengths (Table 1) are in reasonable agreement with the $\mathrm{Sm}^{\text {III }}-\mathrm{Cl}$ bond lengths reported in the CSD [2.65 (4) \AA for terminal and 2.80 (6) A for bridging chloride ions]. The $\mathrm{Sm}-\mathrm{O} 1$ bond length in (I) [2.305 (2) \AA] is larger than that in the only other μ_{3}-oxo-samarium complex reported $[2.211$ (8) \AA; Hosmane et al., 1996], whereas the $\mathrm{Sm}-\mathrm{O}$ (THF) bond length in (I) [2.4573 (18) \AA] agrees with the mean value from the CSD $[2.47$ (6) \AA]. The seven-coordinate Sm atom is in a distorted pentagonal bipyramidal environment, with the terminal Cl atoms in axial positions. In (II), the Sm atoms are six-coordinate.

The two crystallographically equivalent Ti atoms are bound to one terminal and two bridging chloride ions, with $\mathrm{Ti}-\mathrm{Cl}$ bond lengths of 2.3778 (7) and 2.48 (2) \AA (mean value), respectively, both in good agreement with the corresponding mean values for $\mathrm{Ti}^{\mathrm{III}}$ ions from the CSD [2.35 (4) and 2.49 (6) \AA, respectively]. The $\mathrm{Ti}-\mathrm{O}$ (oxo) bond length [1.9065 (13) \AA] is smaller than the mean value $[1.968(6) \AA]$ for the μ_{3}-oxo- $\mathrm{Ti}^{\mathrm{III}}$ complexes in the CSD. The Ti atoms are further bound to two THF molecules each, with a mean bond length of 2.131 (6) \AA [the mean $\mathrm{Ti}^{\mathrm{III}}-\mathrm{O}$ (THF) bond length from the CSD is 2.16 (7) \AA]. The Ti atoms are thus six-coordinate and their environment is distorted octahedral. Each of the three polyhedra associated with the three metal ions shares one edge with each of the two others.

The central μ_{3}-oxo ion is trigonal, with a difference of only 3.6° between the $\mathrm{Sm}-\mathrm{O} 1-\mathrm{Ti}$ and $\mathrm{Ti}-\mathrm{O} 1-\mathrm{Ti}^{\prime}$ angles, whereas the angles around the two bridging chloride ions differ by about 5°, in keeping with a $\mathrm{Ti} \cdots \mathrm{Ti}^{\prime}$ distance $[3.2617(9) \AA$ A $]$ which is smaller than the $\mathrm{Sm} \cdots \mathrm{Ti}$ distance [3.6745 (5) Å].

Apart from van der Waals interactions, the packing is probably stabilized by a weak $\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\prime \prime}$ hydrogen bond [doubly primed atoms are at the symmetry position $\left.\left(\frac{1}{2}-x, \frac{1}{2}-y, 2-z\right)\right]$, which, together with the symmetrical $\mathrm{C}^{\prime \prime}-\mathrm{H}^{\prime \prime} \ldots \mathrm{Cl} 1$ bond, ensures dimerization around a symmetry centre (Table 2).

Experimental

An NMR tube was charged with $\mathrm{Sm}(6.0 \mathrm{mg}, 0.040 \mathrm{mmol})$ and anhydrous THF (0.6 ml) in a glove-box. $\mathrm{TiCl}_{4}(8.8 \mu \mathrm{l}, 0.080 \mathrm{mmol})$ was then introduced via a microsyringe. The colour of the solution immediately became yellow, indicating formation of the T^{IV} chloride-tetrahydrofuran complex. The solution was stirred for 15 min and then thermostated at 333 K in a sand bath. After 12 h , dark-pink single crystals suitable for X-ray analysis were recovered as the sole crystalline product from the clear brown solution ($8 \mathrm{mg}, 20 \%$ yield).

Crystal data

$\left[\mathrm{SmTi}_{2} \mathrm{Cl}_{7} \mathrm{O}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{6}\right]$
Mo $K \alpha$ radiation
$M_{r}=942.92$
Monoclinic, $C 2 / c$
$a=10.1224$ (4) \AA 。
$b=34.3476$ (16) \AA
$c=10.9696$ (4) A
$\beta=108.435(3)^{\circ}$
$V=3618.2(3) \AA^{3}$
$Z=4$
$D_{x}=1.731 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Nonius KappaCCD area-detector diffractometer
φ scans
Absorption correction: refined from
$\Delta F(D E L A B S$ in PLATON;
Spek, 2003)
$T_{\text {min }}=0.472, T_{\text {max }}=0.728$
11856 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0144 P)^{2} \\
&+7.993 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.93 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.95 \mathrm{e}^{-3}
\end{aligned}
$$

3384 independent reflections
3155 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.7^{\circ}$
$h=-12 \rightarrow 12$
$k=-41 \rightarrow 41$
$l=-13 \rightarrow 12$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$S=1.06$
Cell parameters from 11856
reflections
$\theta=2.8-25.7^{\circ}$
$\mu=2.59 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Irregular, translucent dark pink
$0.23 \times 0.19 \times 0.12 \mathrm{~mm}$

187 parameters
H-atom parameters
constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Sm}-\mathrm{O} 1$	$2.305(2)$	$\mathrm{Ti}-\mathrm{O} 3$	$2.1379(18)$
$\mathrm{Sm}-\mathrm{O} 2$	$2.4573(18)$	$\mathrm{Ti}-\mathrm{O} 4$	$2.1250(18)$
$\mathrm{Sm}-\mathrm{Cl} 1$	$2.6437(7)$	$\mathrm{Ti}-\mathrm{Cl} 2$	$2.4599(7)$
$\mathrm{Sm}-\mathrm{Cl} 2$	$2.9045(7)$	$\mathrm{Ti}-\mathrm{Cl} 3$	$2.3778(7)$
$\mathrm{Ti}-\mathrm{O} 1$	$1.9065(13)$	$\mathrm{Ti}-\mathrm{Cl} 4$	$2.5089(7)$
$\mathrm{Cl} 1-\mathrm{Sm}-\mathrm{Cl} 1^{\prime}$	$165.84(3)$	$\mathrm{O} 3-\mathrm{Ti}-\mathrm{O} 4$	$170.97(7)$
$\mathrm{Cl} 2-\mathrm{Sm}-\mathrm{O} 1$	$68.247(12)$	$\mathrm{Sm}-\mathrm{Cl} 2-\mathrm{Ti}$	$86.04(2)$
$\mathrm{Cl} 2-\mathrm{Sm}-\mathbf{O}^{\prime}$	$74.03(5)$	$\mathrm{Ti}-\mathrm{Cl} 4-\mathrm{Ti}^{\prime}$	$81.09(3)$
$\mathrm{O} 2-\mathrm{Sm}-2^{\prime}$	$75.77(9)$	$\mathrm{Sm}-\mathrm{O} 1-\mathrm{Ti}$	$121.19(6)$
$\mathrm{Cl} 2-\mathrm{Ti}-\mathrm{Cl} 4$	$165.12(3)$	$\mathrm{Ti}-\mathrm{O} 1-\mathrm{Ti}^{\prime}$	$117.61(12)$
$\mathrm{Cl} 3-\mathrm{Ti}-\mathrm{O} 1$	$177.10(6)$		

Symmetry code: (') $-x, y, \frac{3}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl1}{ }^{\prime \prime}$	0.97	2.82	$3.651(3)$	144

Symmetry code: (") $\frac{1}{2}-x, \frac{1}{2}-y, 2-z$.

H atoms of the tetrahydrofuran ligands were introduced in calculated positions as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

metal-organic compounds

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ1036). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Banik, B. (2002). Eur. J. Org. Chem. pp. 2431-2444.
Bruker (1999). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Daniele, S., Hubert-Pfalzgraf, L. G., Daran, J. C. \& Halut, S. (1994). Polyhedron, 13, 927-932
Ephritikhine, M. \& Villiers, C. (2004). Modern Carbonyl Olefination, edited by T. Takeda, pp. 223-285. Weinheim: Wiley.

Hosmane, N. S., Wang, Y., Oki, A. R., Zhang, H. \& Maguire, J. A. (1996). Organometallics, 15, 626-638
Hubert-Pfalzgraf, L. G., Abada, V. \& Vaissermann, J. (1999). Polyhedron, 18, 3497-3504.
Imamura, H., Koda, K., Miura, H. \& Tsuchiya, S. (1989). Chem. Lett. pp. 171172.

Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Villiers, C. \& Ephritikhine, M. (2001). Chem. Eur. J. 7, 3043-3051.

